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Maximum-Norm Interior Estimates 
for Ritz-Galerkin Methods 

By James H. Bramble, Joachim A. Nitsche and Alfred H. Schatz 

Abstract. In this paper we obtain, by simple means, interior maximum-norm estimates 
for a class of Ritz-Galerkin methods used for approximating solutions of second order 
elliptic boundary value problems in RN. The estimates are proved when the approxima- 
ting subspaces are any of a large class of piecewise polynomial subspaces which we assume 
here to be defined on a uniform mesh on the interior domain. Optimal rates of conver- 

gence are obtained. 

1. Introduction. In this paper we shall be concerned with obtaining "quasi- 
optimal" interior maximum-norm error estimates for a class of Ritz-Galerkin methods 
used for approximatiag solutions of elliptic boundary value problems. Interior estimates 
in L2 Sobolev norms for such methods were obtained by Nitsche and Schatz in [15] 
under rather mild assumptions on the approximating subspaces. Here we shall study 
locally, the rate of convergence in maximum-norm using a large class of piecewise poly- 
nomial subspaces which we require to be defined on a "uniform mesh" (on the region 
in which the error is being estimated). We shall obtain these estimates utilizing the 
theory developed in [15] with the aid of a new Sobolev type inequality (proved in 
Section 4) which is valid for the subspaces considered here but which is in general not 
valid over all (sufficiently smooth functions). It will allow us to obtain the best possible 
rate of convergence locally for the particular subspaces used. Thomee and Westergren 
[18], obtained interior maximum-norm estimates involving elliptic difference operators 
from discrete L2 estimates using a discrete Sobolev inequality. 

An outline of the paper is as follows. In Section 2 we introduce some notation 
and preliminaries. In Section 3 we introduce the approximating subspaces and discuss 
the properties needed. In [14] and [15] a new property was introduced which was 
verified in [151 for some particular subspaces. The same method of verification may 
be used for a large class of piecewise polynomial subspaces for which a projector can be 
defined on each element. This fails for example in the case of smooth splines. In the 
appendix we shall verify this property for the tensor products of a large class of one 
dimensional piecewise polynomial splines. Section 4 (Theorem 2) contains our main 
results on interior estimates. In Section 5 we apply the estimates to specific examples. 

As in [15], this paper concerns itself with approximations to solutions of second 
order elliptic differential equations. However, the method given there and here can be 
easily generalized to treat Ritz-Galerkin methods for elliptic differential equations of 
order 2m. 
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2. Notation and Preliminaries. Let Q2 be a bounded open set in RN. For m a 
nonnegative integer, Cm(Q?) will denote the space of real valued functions having uni- 
formly continuous derivatives up to order m on Q2 with the norm, 

(2.1) IU Im, = 
E sup LDau(x) 1. 

Iod?m xEcA 

CO will denote the infinitely differentiable functions on Q2 whose support is contained 
in Q. The space Hm (Q) (respectively, hm (2)) will denote the completion of C??(Q) 
(respectively, CO'(Q)) with respect to the norm, 

(2.2) lulm,Q (9(Lj Do ul dX)) . 

Note that H0(Q) = H?o() = L2(&2). 

Let 0 < h < 1 be a parameter, and for each h, let 92j C Q2,j =I,...,I(h) be 
disjoint open sets such that Ul(h)E2h = Q. The sets Q&2 form a partition of Q2. For m 
a nonnegative integer, Cm,h(&2) and Hm,h(E2) will denote the space of functions whose 
restrictions to Q2j belong to Cm(E27) and Hm(E27), respectively, with the corresponding 
norms, 

(2.3) lulm Q=4 supth lul jh 

and 

I(h) ? l/ 
(2.4) 11 u ll Q Z U 112 

where for simplicity we have suppressed the dependence on h in the notation. 
The space H`m(2) is defined as the completion of CO(Q2) with respect to the 

norm, 

(2.5) Ilull_ ~ Su ~C~ f uv dx 
(2.5) zoe~~~~~~~VCO (Q ) llu lim, sL 

We shall also make use of norms involving difference quotients. For v a multi- 
integer define the translation operator 

T.vu(x) = u(x + Ph), 

and the forward-difference quotients, 

a = h- '(T i - T)u. 

Here I is the identity operator and e, is the multi-index whose jth component is 1 and 
all others 0. For any multi-index oc, we set 

Ih u = Lh ,w 1 h,N 

Tfu L2Q and --A is -n inee ,wese 
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\1/12 

(2.6) IIUIIm,Q h E | (ahu)2dx 
\lalam oa,h 

where &2012 is the subset of Q2 such that u(x) is in the domain of a. 

We shall also use Sobolev's Lemma in the following form: 

LEMMA 2.1 (cf.,e.g. [1]). Let Q20 Cc &21. If u E HINI21 +1(12l) then (after 

possible modification of u on a set of measure zero) u E C(Q0) and 

(2.7) |u lo0 a0 < CIl u 1 [NI21 + 1,Q 

where C = C(Q20, 1) and [N/21 is the integral part of N/2. 

3. The Approximating Subspaces. The local error estimates given in [151, which 

we will use in this paper, depend on certain properties of the approximating subspaces 

used. For simplicity in presentation we shall consider here piecewise polynomial sub- 

spaces defined on a uniform mesh. We proceed in the following manner: First we shall 

describe, in general terms, a partition of an arbitrary domain 2, which is the restriction 

to 2 of a uniform partition of RN. Then a general class of piecewise polynomial sub- 

spaces will be defined relative to such a partition, and the properties we need will be 

stated. Examples will be then given. 

Let Q be a given bounded simply connected domain in RN and suppose that it 

is partitioned into disjoint open sets iTr, j = 1, ... ,1, i.e. with Urrj = Q. For any 

0 < h S 1, we set Qh = hQ, rr = hT1r, and for any multi-integer v, let Qh,v and lTJl,V 

denote the translates of Qh and Tht, respectively, by hv. We shall assume that {Q1,U} 

form a uniform partition of RN, i.e. the Q1"' are disjoint and UUQ1;U = RN. Then 

so do the {rh'b,}. For any bounded open set Q, we now form the spaces Cm'h(E2) 

and Hm h(Q) as in Section 2 using the sets ire"' n Q for the subdivision {i2{}. T 
I1 I 

will be called a mesh domain if T is the union of some of the i7-'. The set of all 

mesh domains will be denoted by F.. We note that if &2 CC RN, then there exists a 

c Fh such that 21 C T and dist(T, U2) S Ch, for h sufficiently small where C is 

independent of h. 

In general, the finite element spaces with which we shall work will be based on a 

given finite set A of multi-indices and a space L spanned by the monomnials xp 

xg ..**x.PN for 3 C A; i.e. 

(3.1) L jpl2p r#x,r#GR 
j3GA 

We impose the condition on A that L be translation invariant; i.e. if Ap(x) E L and 

y C RN, then Ap(x + y) E L. Typical examples are A = {i3I,3i < r4 or A = {,B1 1,1 < r} 

for some fixed integer r. For any domain, Q', LQ will denote the restriction of L to 

Q2'. We first define a general (translation invariant) space Sh(1) for any mesh domain 

T by 

Sh(D) = {90I9PI1z,v E L for all r"h,' C TI. 

Sh(&) for arbitrary P. is then the restriction of Sh(T) to Q. We note that in general 
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the elements of Sh(2) may be discontinuous across the boundaries of the 7rhtv. I 
The spaces we will use will be subspaces of Sh(2). Before defining them we shall 

note some properties of the general space Sh([) and a property of Sh(Q) for a particu- 
lar choice of A which will be useful later on. 

PROPOSITION 1. Let T C Q2 and T E Fh. Then for any up C S (S) inverse rela- 

tions of the type, 

(3.2) o1Ol,T S Ch-N/2I1110T 

and 

(3.3) 11ll T 6 Ch k-m '11P1T1 0 6 k S m S maxII3, f3 C A, 

hold, where C is independent of h, up and T. 
These properties are well known and much used. The proof in the one dimension- 

al case was given by Nitsche in [12]. The proof for the above cases are similar. 

PROPOSITION 2. Let QO CC Q1 and Sh(&21) be as above with {31 1013 < r} C A 
for r > 1 a given integer. Let ax be any multi-index with lIal 6 t for t fixed but arbitrary. 
Then for any u E Cl+I'aI(21),there exists a Uh C S"(Q2) such that for all h sufficiently 
small 

(3.4) I<u-U,I0~ zII~~,1 0 ?1?I r, (3a4) ~~~laha(U Uh)I'O,o "_ Chi I UII+ IC, Q X O6 6r 

and 

(3.5) Iac(U - Uh)IIo0,n 6 Ch1'IIuIl+ Iau,a a 0 6 16 r, 

where C is independent of u, h and a. 
The proof will be given in the appendix. 
We shall now define the subspaces with which we shall work. Let r > 2 be an 

integer. For each 0 < h 6 1, Srh(E1) will denote a subspace of CO(E21) n f(l2) 

having the following properties for all h sufficiently small: 
A. 1. Let Sr'(j21) = {&p E Sr(2 )I supp((p) C Q1 } X Q CC Q1, and ax be any 

fixed multi-integer. Then a?tp E kp,) for all (p C ?hpo) 
A. 2. Let QO CC Q1 Then for each u C hi(po) there exists an ri C Yr(EY 

such that 

(3.6) IIu-71II1l,n 6ChZ'II uI 1 6j6r, 

where C is independent of u and h. 

A. 3. If p E S2r1), QO Cc ,1, CO E CO(QO) then there exists an 7 GE Srh(E 
such that 

(3 *7) IIWDf - 7l1,q II 6 Ch 11llp 11 1 ,Q no' 

where C is independent of h and (p. 

Examples. In all of our examples we take Q = {x 10 6 xi < 1} the unit cube in 

RN. 
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Example 1. First let N = 1 and Q = 7r, (i.e. the unit interval). Then the {Qh,v 

form a uniform partition of the line into intervals of length h. Let Sh be as above 
with A ={=1 313 < r} and k be an integer O S k S r - 2. We define Sh(R1)= 
Sh n Ck (the piecewise polynomials of degree < r - 2 which belong to Ck). For 
N > 2 we define S" (RN) = S (R1) X * * Sh(R'), the N fold tensor product of on( 
dimensional splines and for arbitrary Q2 CC RN, Sh(E2) is the restriction of Sh(RN) 

to Q2. 
Another way of describing this space directly in RN for N > 1 is as follows: Le 

Q = ir1 (the unit cube in RN), and let Sh be taken with A = {f3If3i <r}. Then Sh(E2) 
is the restriction to Q2 of the subspace of Sh which has the property that p E Sh(2) 
if all the derivatives D:O< with f3i S k are continuous on Q2. We note that when k = 

r - 2 these are the B-splines of Schoenberg [16]. For m > 1, an integer, r = 2m and 
k = m - 1, these are piecewise Hermite splines. 

Example 2. Let N = 2 and partition Q into triangles ir1, j = 1, . . ., 1, and take 

Sh(E) to be the elements of Bramble and Zlamal [5]. Briefly, r = 4m + 2, m = 

0, 1, ... , etc.,A = {,BI 1131 <r} and Sh(E2) C CO(Q2). 
Example 3. For general N, partition Q into 1 n-dimensional simplices ir1 and 

take Sh(E2) to be the restriction to Q2 of the continuous piecewise linear functions on 
this partition. Here r = 2. 

We note that A. 1 is trivially valid and A. 2 is well known for all of the above 
examples. 

The property A. 3 was introduced in [14]. In [15] it was verified for Example 
1 (in the special case of Hermite splines) and Example 2. The proof for Example 3 
follows in the same manner. The proof of A. 3 for the large class of spaces described 
in Example 1 will be given in the appendix. 

4. Interior Estimates. Let &21 be a bounded open set in RN and B(u, v) be a 
bilinear form defined on H'(E21) x H'(E21) of the form, 

N N 

(4.1) B(u, v) = f ( aii(x)DjuDjv + E b (x)(Diu)v + c(x)uv) dx, 
i,j= j~~~~= 

where for simplicity the coefficients aij, bi and c are assumed to be of class C(E21). 
We note that in general B(u, v) may not be symmetric. We assume throughout that 
B(u, v) is uniformly elliptic on &1 ; i.e. there exists a constant c > 0 such that for all 
x E 21 and all real vectors =(1, . . .N) = ? 

N N 
c < qx~ 

i=l i,j=l 

We shall be interested in obtaining estimates in the maximum norm for u - Uh, 

where uh E Sh(E21) anu u E H'(E21) satisfy the "interior equations," 

(4.2) B(u - Uh, s) = 0 for all p E Sr (21). 

Here Uh may be thought of as an approximation to u on Q.1 obtained by using some 
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Ritz-Galerkin method on a larger set Q2 (cf. [15] ). 
The following L2 estimates were obtained in [ 15, Theorem 6.1]. 
LEMMA 4.1. Let QO CC Q1 and t and p be fixed but arbitrary nonnegative 

integers. Let Sh(2) satisfy A. 1, A. 2 and A. 3. If 1 < j < r, u E Ht+ l(+ 1) and 
Uh E Sh(&2) satisfy (4.2), then there exists an h0 > 0 such that for all h E (0, ho] 

(4.3) IIu - Uh lIt,0 S C(h < Qh 1 u II,+ t1? IIu - uhI1_P Q), 

where C is independent of u and h but in general depends on QO, Q1, t and p. 
COROLLARY. If Uh E Sh (1) satisfies 

B(uh, <) = O for all op E Sr(E0) 

then 

(4.4) IIUh llt Q09h S CllUhl -P,Q 

We shall use these estimates to obtain maximum-norm estimates for u - uh. In 
order to do this, we shall first prove a Sobolev type inequality which is valid for the 
general space Sh(E21) and hence for the subspace Sh. What is important here is that 
we shall replace the L2 norms of derivatives on the right-hand side of (2.1) with L2 
norms of difference quotients. 

LEMMA 4.2. Let QO CC 21. There exists an ho E (0, 1] such that for all h E 

(0, h0] and all ep E Sh(21 ) 

(4.5) NOI<OQ < CII<IIN12 1 +1 ,Q nh 

where C is independent of h and op. 
Proof. t Cc CC Q CC CC 21, and let x0 be an arbitrary but 

fixed point such that xo E rh for some j and 7fl n QO 0. We note that n. need 
not lie entirely within QO, but for h sufficiently small, Trh C O+. The set of points 
x + Ph, where v is an arbitrary multi-integer, form a discrete mesh, say Mh , on RN 

of size h. Let u be any mesh function defined on Mh . Then the following discrete 
Sobolev inequality (cf. [17]) holds: 

/ \ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1/21 
(4.6) max I.(Y)I ? (7N/2 ( E E h, 

y=x +vhEQS++ 1t0I?IN/21+1 t=xo+vh eS2t/ 

where C is independent of ep and h but may depend on O+ +, QE+ and x0. Now letx 
be any other point of 7T< and consider the set of points of the form x + Ph E QO+ I 
This set can be mapped, by a simple translation into a subset of the set of points 
x + Ph E QO++. If now ep E CCOh(E1), we apply the inequality (4.6) to the trans- 
lated ep and then translating back we obtain 

(4.7) max Ik()I ChNI2 h E)12 
y=x+vhGQ 2o \131<?[N/21+1 =x+vhGSI1 / 

where C= C(Q2, Q2) but in particular is independent of h, ep and the choice of 
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x E 7F or its translates in 92+. Integrating ep2(x) over ir7 and using (4.7),we obtain 

(4.8) 1 [xNI21 +x1 

S Ch I"PII[N/2 1 + 1 ,Q 1h 

where C= C(Q20, 21) and 7hv denotes a translation of 7rh by Ph. 
If ep belongs to Sh(921), then from (3.2) we have 

(4.9) |I|O h ir ChN2 / ll11 O,irh 

where C is independent of j, h and u C Se. Hence from (4.8) and (4.9) 

IO-ff rh S C11Pll [N/2 1 + 1 ,Q 1 ,h 

holds for 7rh or in fact for any one of its translates 7rhrv C 92+. Since we need consider 
only a fixed finite number of such domains 7r Q = 1,... , 1), the result (4.5) now 

follows. 
Remark. An examination of the proof of Lemma 4.2 reveals that the only 

property of the subspaces Sh(921) that was needed was (3.2). Hence Lemma 4.2 is 
more generally valid for the set of functions u E CO,h(p) for which this property 
holds. 

We are now in a position to prove a maximum-norm estimate. 
THEOREM 1. Let Q0 CC Q1 CC RN and A. 1, A. 2 and A. 3 hold. Let 0 S 

j S r, ( an arbitrary but fixed multi-index, u E H7(92) with y = j + 131 + [N/2] + 1 

and uh C Sh(2) satisfy 

B(u -uh,p)= for all p E SO(h ). 

Let p be an arbitrary but fixed nonnegative integer. Then there exists an ho C (0, 1] 
such that for all h C (0, h 0] 

(4.10) I3h(u-uh)1O, a1 S C(h'II u II 1 + Ilu -uh 11-p ), 0 jr, 

where C is independent of u and h. 
Remark 3. When 1131 = 0, (4.10) gives a maximum-norm estimate for the error 

u - uh. 
Proof Let 0 CC CC 2CC Q1. The triangle inequality yields 

(4.11) Ih(u - 
Uh)10,o la?h(u 

- 
Uh)Io,n0 + 1I'(Uh -Uh)lo,no 

where we first choose an e as in Proposition 2 such that Srh C Sh; and then take 

Uh e Sh satisfying (3.4) and (3.5) with Q0 and 21 there replaced by 92+ and Q2j. 
Hence 

(4.12) Iah(u - Uh1)10o <.0 6 I u I1+ la l ? _ 6 1l u lly' aI . 

Now a^(Uh - u. ) C SO(K2t) and it follows from (4.5), (4.3), (3.5) and (4.12) that 
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Iah(Uh Uh)l0oQ0 <CIIUh -UhIIN12j+1+101,2+,h 

(4.13) < C(IIu -Uhl'IN12+1+1p91,+, h + IIu- UhII[NI21+1+IpIl,9+h) 

< C(hIlIL Q u + IIUUI u P, 

The inequality (4.10) now follows from (4.11), (4.12) and (4.13). 

COROLLARY. If Uh E Srh ( I) satisfies B(uh, Ip) = 0 for all ep E Sr?(Q21), then 

(4.14) |uhlo,Q 0< CllUh p-PQ2 

We shall now consider estimates for the rate of convergence of difference quotients 

of uh to derivatives of u. Consider finite difference operators of order k of the form, 

(4.15) QhU 
=P 

C,aT7gU 
v,I 3I6k 

where v is an arbitrary multi-integer and all but a finite number of the constants C 

vanish. If i is a nonnegative integer and a a multi-index, we shall say that Qh = h 

of order lal approximates Da with order of accuracy j on &20, if for all u E C1+ lal(Q) 

(4.16) Dcau - QhaUtO,no < hIUlj+ ia I,1 

where &2 CC Q and C = C(Qo20 n). 
THEOREM 2. Let 20 CC 1 CC RN, A. 1, A. 2, and A. 3 hold. Let 1 < < r, 

a any fxed multi-index, y =j+ lal + [N/21 + 1,u E H'y(21) and uh ESr2) 

satisfy 

B(u -u h, p) = 0 for all ep ES7r(Q21). 

Let Qh be any finite difference operator of order lal of the form (4.15) which approxi- 

mates Da with order of accuracy j. Let p be an arbitrary but fixed nonnegative integer. 
Then there exists an ho E (0, 1] such that for all h E (0, ho] 

(4.17) Dau-Qhu-Q o 0 < C(h IIuII,Q1 ? IIu -u IP,I 1 <jr, 

where C is independent of h and u, but in general depends on p, a, a20, and 21 . 

Proof Let Q2 CC Q Cc &2, then using the triangle inequality and the defini- 

tion of Qh we obtain for h sufficiently small that 

LDau - Q'u <,~ L Dc'u - Q'uI0,,0 + IQ(u - 

I ID'u - Q'ulo,n0 + C Q : Au Q <~ ~~ ?t-2I a la( (u Uh)10,n + 

The inequality (4.17) is now obvious in view of (4.16) and (4.10). 
Remark Previously we required that the partition and the subspaces defined on 

them have certain properties which are invariant with respect to translations of size h 

in the directions of the coordinate axes. It can be easily seen that the results of Theorem 
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1 (or Theorem 2) in the case ct = 0 remain valid for piecewise polynomial subspaces 
defined on partitions which may be mapped onto such partitions by a nonsingular 
affine mapping. 

5. Examples. Here we shall exemplify the theory given in Section 4. We shall 
restrict ourselves to discussing Dirichlet's problem. Let Q be a bounded domain in RN 
with boundary 30. For simplicity consider 

(5.1) -Au=f inQ2, u=0 ona&. 

For the purposes of the applications given here, we shall make one further approxim- 
ability assumption on the subspace Sh(E2). Namely there exists a constant C indepen- 
dent of u and h such that for allu EHt(Q), 1 StSr. 

(5.2) inf llu - )(11 ,< C72 liu lit,Q - 
xeShW(Q ) 

We shall sometimes require that the elements of Sh(E2) vanish on MQ. In this case we 
shall assume that (5.2) holds only for u E HI (&) n Ht(Q). 

In what follows we shall suppose that the hypotheses of Theorem 2 are satisfied 
where 20 CCQ1 CCc 2. 

Example 1. Dirichlet's Problem on a Smooth Domain. In this example we shall 
assume for simplicity that MQ E C'. In Babuska [2] and Nitsche [101, methods were 
introduced for approximating solution of (5.1) in which the approximating subspaces 
need not satisfy the boundary condition. These methods have the same interior equa- 
tions; i.e. if uh is the approximate solution determined by any one of these methods 
then 

(5.3) f N 
aU h a dx 

N 
aN ax, dX Eh () 

(5 ax f-- xp Ndx = _ ~ d~cx e (2. 

What is important here is that we may choose Srh(R) to satisfy the conditions of Theo- 
rem 3 (cf. [15, Example 2], for more details). 

Now it was shown in [41 that the estimate, 

(5.4) 11eell2-r,a < hr-i1+tljUlltQ,' 

is valid for 1 S t S r. Using the inequalities (5.4), (4.17) and the fact that lIell2_r a11 

< lIell2-r,1, we obtain the error estimate, 

(5.5) D'U - 
QhUh 1O,n0 

< Car(IIullIr+ laI+ [NI21 + ? lull2,2). 

Here a is any multi-index, Qh is any finite difference operator of the form (4.16) 
approximating Da with order of accuracy r. In terms of the data, (5.5) may be re- 
written as 

(5.6) lDPu - QuhIuo Q2 C7hr(llfllr+a+[N,21112 + li1f 110,). 

Example 2. Dirichlet's Problem on the Square. Let Q2 be the unit square in R2, 
i.e. Q2 = {xO S xi S 1, i = 1, 2}. For our subspace Sh(E2), we may choose any one 
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of the examples given in Section 3 requiring that the elements vanish on the boundary. 
Let u, be determined satisfying (5.3) for all ep E Shi(2). Then (cf. [15, Example 3, 
Section 7] ) the estimate (5.4) holds, and applying Theorem 2, it follows that both the 
error estimates (5.5) and (5.6) remain valid in this case. 

6. Appendix. 
Proof of Proposition 2. It is easily seen that we can restrict ourselves to the case 

where supp(u) C &21. Let Pu be the L2 projection of u onto Sh(RN). This projection 
is locally determined; i.e. the restriction of Pu to each irjT" is equal to the L2 projection 
of u on Sh(7rv). It follows from the Bramble-Hilbert Lemma [3] that 

1lu-Pull h,v < ChI IIUII h,v, O <l<r. 

Now using (3.2) and the above inequality we have 

[Pu1 v S h /IPOh, v IIC /1UII0 h,v < CIUIo h,v 

Therefore 

lu - Pul 0'hfvv 
< Clulo 0,h, v 

and it follows from [3] that 

1u - Pulo 0h,v -<- Ch ull ,7Iv) 

and the inequalities (3.4) and (3.5) follow easily in the case ax = 0. The case for 
general ax follows from the case ax = 0 with the observation that PQa'u) = aa(Pu). 

Verification of A. 3 in the Case of Tensor Products of One Dimensional Splines 
(Example 1, Section 3). First consider the case N = 1 and let Io = Qo and I, = Q1 
be finite intervals with common midpoints. Then it follows from Douglas, Dupont and 
Wahlbin [7] that for any u E Hok(IO) n Hr h(I ) 

(6.1) llu - Pull inf IIu - o011 < Chr 11u(r)110,. 

We note that 

(6.2) 11u - Pu ll,110 llull0,10 

Consider now N > 2, and let Q1 be the N-fold product Q1 =I1 x x Il. 
For u E L2(21O), and each fixed value of the variables xi E I1, i $ j, P1u is defined by 

1u -Pju 11o 01= inf llu -,(x1j)1oj1 

That is, for each fixed value of xi C l1, i 1 j, P1u is the one dimensional L2 projection 
onto or(I,). Note that P1u is a function of (x1,.. , xn). Now define Pu = Pi 
PNu. Set - = Io x ... x Io, with Io and I, as before (hence Qo and Q1 are cubes 

with common centers and Qo C Q1) If u C Hk(po) n Hr h(E20), it follows using 
(6.1 ) and (6.2) that 
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IIu - Pu Ito0, 1 < IIu -P1U II0ioQ1 + lP1 (U - P2U)II0, E1 

(6.3) N arU 
+ Ii1 PN_ 1(U PNU)t10,2N Chr a 0 

j=1 I 1 0,2 

where we note that supp(Pu) C Q21. 

It is not hard to see that 

(6.4) lim 11 u - Pull1 =0. 

Consider the sequence h, = 2-'h for given h and refine the given partition into cubes 

with side h1. For given h, let Pl = P corresponding to the given hP. Then in view of 

(6.4), (3.3) and (6.3) we have 

00 
llu - 

P'ull' 
,Q lip,+ IP+ lu - PluI l ,Q 

1=0 

(5C C h -+1 IIPu+ 1 u - P'u ? Q 

1=0 
(6 .5) c C E hl- 11 ( 11 u - P'u llo Q + 11 u - pI+ 1 u lQ) 

1=0 

C 1: hl- 1(hlr + h r+l) |ar| 

< NhE | aXru| 

Now consider any two domains QO CC Q21 C RN with dist(-20, Q21) = 4d. Cover QO 
with a finite number of cubes Ci' with side d and consider along with these the cubes 

C3d having the same center as Ci. Let O E C'(C3d) and 2i = 1. Set u= O u, 
where u E Hk( o) n Hr h(20). For each i we have 

aru 
11 ui Pui 1i Cid Chr 11 3Zrll 2 

1,C~ ~ 3Xj~ o,C?d 

From this is easily follows that there exists an 7 E sor 2 ) such that 

(6.6) llu -7II1, 1 C71"(Iull' + 2 

We are now in a position to prove (3.7) in this case. Let p E Sh(g21) and & z 

CO(Q20) then wop E Hk(20) n Hr h(20). Applying (6.6) to co = u, we obtain 

llIpo - 77111 ,i 1 r 1 [1p l 1, 

where we have used Leibniz's rule, the property that c. E Co'(Q2) and the fact that 
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The inequality (3.7) now follows from the inverse property (3.3). 
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